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Transforming growth factor beta 1 (TGF-β1)-induced epithelial–mesenchymal transition (EMT) in kidney epithe-
lial cells plays a key role in renal tubulointerstitial fibrosis in chronic kidney diseases. As hypoxia-inducible factor
(HIF)-1α is found to mediate TGF-β1-induced signaling pathway, we tested the hypothesis that HIF-1α and its
upstream regulator prolyl hydroxylase domain-containing proteins (PHDs) are involved in TGF-β1-induced
EMT using cultured renal tubular cells. Our results showed that TGF-β1 stimulated EMT in renal tubular cells
as indicated by the significant decrease in epithelial marker P-cadherin, and the increase in mesenchymal
markers α-smooth muscle actin (α-SMA) and fibroblast-specific protein 1 (FSP-1). Meanwhile, we found that
TGF-β1 time-dependently increased HIF-1α and that HIF-1α siRNA significantly inhibited TGF-β1-induced
EMT, suggesting thatHIF-1αmediated TGF-β1 induced-EMT. Real-time PCR showed that PHD1 and PHD2, rather
than PHD3, could be detected, with PHD2 as the predominant form of PHDs (PHD1:PHD2 = 0.21:1.0). Impor-
tantly, PHD2 mRNA and protein, but not PHD1, were decreased by TGF-β1. Furthermore, over-expression
of PHD2 transgene almost fully prevented TGF-β1-induced HIF-1α accumulation and EMT marker changes,
indicating that PHD2 is involved in TGF-β1-induced EMT. Finally, Smad2/3 inhibitor SB431542 prevented
TGF-β1-induced PHD2 decrease, suggesting that Smad2/3 may mediate TGF-β1-induced EMT through PHD2/
HIF-1α pathway. It is concluded that TGF-β1 decreased PHD2 expression via an Smad-dependent signaling path-
way, thereby leading to HIF-1α accumulation and then EMT in renal tubular cells. The present study suggests
that PHD2/HIF-1α is a novel signaling pathway mediating the fibrogenic effect of TGF-β1, and may be a new
therapeutic target in chronic kidney diseases.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Renal tubulointerstitial fibrosis, characterized by accumulation of
extracellular matrix, is the key underlying pathology in the progression
of chronic kidney diseases and is the final common pathway for end-
stage renal disease [1,2]. Epithelial-to-mesenchymal transition (EMT) is
a process by which epithelial cells lose their epithelial specific markers,
undergo cytoskeletal remodeling, and gain a mesenchymal phenotype.
More and more studies show that tubular EMT is an important resource
of fibrogenic myofibroblasts and plays a central role in tubulointerstitial
fibrosis [3,4], such as in diabetes nephropathy [5,6]. Furthermore, there
is overwhelming evidence implicating that transforming growth factor-
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beta 1 (TGF-β1)may act as the keymediator of tubular EMT [2,7]. For ex-
ample, TGF-β1 was found to induce EMT in a rat tubular epithelial cell
line (NRK-52E), and streptozotocin-induced diabetic rats exhibited in-
creased gene expression of TGF-β1, enhanced mesenchymal markers
α-smooth muscle actin (α-SMA) and collagen with a concomitant de-
crease in epithelial marker such as E-cadherin in the kidneys [8]. Yeh et
al. reported that TGFβ1-induced EMT plays a critical role during chronic
tubulointerstitial fibrosis [9]. Moreover, transgenic mice with increased
expression of TGF-β1 develop renal fibrosis [10].

Hypoxia-inducible factor 1α (HIF-1α) is a transcriptional factor that
has been recently associatedwith theprogressionof chronic renal injuries
[11–13]. Notably, HIF-1α has been shown to play a critical role in EMT.
Higgins et al. reported that hypoxia induced significant increase in EMT
marker fibroblast-specific protein 1 (FSP-1) and cell migration in murine
primary tubular epithelial cells. However, this hypoxia-induced EMTwas
not observed in HIF-1α-deficient cells [13]. In vivo study showed that
genetic ablation of epithelial HIF-1α inhibited the development of
tubulointerstitial fibrosis and FSP-1-positive cells in unilateral ureteral
obstruction kidney [13]. Hypoxia induced significant EMT in hepatocytes
from wild type mouse, but failed to induce EMT in hepatocytes isolated
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from HIF-1α-deficient mice [14]. Moon et al. demonstrated that in bile
duct ligations-induced liver fibrosis animal model, liver underwent
hypoxia, and HIF-1α was activated. After HIF-1α was deleted, bile duct
ligations-induced collagen I and α-SMA expressions in the liver were
significantly decreased [15]. Another study in alveolar epithelial cells
showed that hypoxia-induced EMT was significantly attenuated by
HIF-1α shRNA [16]. All these data demonstrated an important role of
HIF-1α in EMT.

Interestingly, it has been shown that TGF-β1 stimulates HIF-1α
accumulation and that HIF-1α functions as a mediator in many
TGF-β1-induced actions [17–19]. For example, in colorectal cancer
cells, HIF-1α was found to mediate TGF-β1-induced glutathione
peroxidase-1 and protects from H2O2-induced cell death in colorectal
cancer cells [17]. It was also reported that HIF-1α mediated TGF-β1-
induced fibrogenic protein such as collagen and plasminogen
activator inhibitor expression in renal epithelial cells and in alveolar
macrophages [18,19]. However, the contribution of HIF-1α to TGF-β1-
induced EMT in renal epithelial cells has not been evidenced. In addi-
tion, the role of HIF prolyl-hydroxylases, the enzymes that promote
the degradation of HIF-1α [20–22], in EMT process has not been
investigated. A recent study reported that TGF-β1 inhibited PHD2
level via Smad2/3-dependentmechanism in tumor cells [23], indicating
a possible role of HIF prolyl-hydroxylases in TGF-β1-induced EMT.

HIF prolyl-hydroxylases hydroxylateHIF-1α at the specific proline site
using oxygen as a cofactor and the prolyl-hydroxylated HIF-1α is then
recognized and targeted for degradation by the ubiquitin–proteasome
pathway [20,21]. Under hypoxia, prolyl hydroxylase activity is inhibited
and HIF-1α becomes stabilized to induce the transcription of its target
genes. In addition to oxygen homeostasis-related regulation, PHDs also
respond to non-hypoxic stimulations including TGF-β1 and regulate
HIF-1α via oxygen-independent mechanisms [23,24]. Three isoforms of
HIF prolyl hydroxylase, including prolyl hydroxylase domain-containing
proteins (PHDs) 1, 2, and 3, have been identified and PHD2 is the primary
PHD in the kidneys [25–28]. Given the fact that (1) TGF-β1 induces
HIF1-α accumulation, (2) HIF1-α mediates EMT, and (3) HIF prolyl-
hydroxylases are present in the kidneys and regulate HIF-1α levels in
renal cells [25–28], the present study tested the hypothesis that PHD2/
HIF-1α pathway mediates TGF-β1-induced EMT thereby leading to
fibrogenesis in renal tubular cells.
2. Materials and methods

2.1. Cell culture

NRK-52E cells, a rat renal tubular cell line, were purchased fromATCC
and maintained in Dulbecco's modified Eagle's medium with 4 mmol/l
l-glutamine adjusted to contain DMEM/Ham's F12 (DMEM/F12) medi-
um, supplemented with 10% fetal calf serum (FCS), glutamine (2 mM),
penicillin (100 IU/ml), and streptomycin (100 μg/ml). Cells were cul-
tured at 37 °C in a humidified atmosphere of 5% CO2 in air [29]. For
EMT experiments, cells were treated with 5 ng/ml TGF-β1 for 48 h.
2.2. Transfection of HIF-1α siRNA

Transfection of siRNA was performed using the siLentFect lipid
reagent (Bio-Rad, Hercules, CA) according to the manufacturer's
instructions as we described previously [30]. For a 10 cm dish,
200 pmol of siRNA was used. After 6 h incubation in transfection
reagent, the cells were then switched to normal medium. The sequence
of HIF-1α siRNA was: sense, 5′-GGAAAGAGACUCAUAGAAA-3′ and
antisense, 5′-UUUCUAUGACUCUCUUUCC-3′ (Sigma-Aldrich, St Louis,
MO). A scrambled small RNA (Qiagen, Valencia, CA), which was con-
firmed as non-silencing double-stranded RNA, was used as control for
siRNA experiments.
2.3. Transfection of plasmids expressing rat PHD2 into the cells

Plasmid transfections were performed using lipids (DOTAP/DOPE;
Avanti Polar Lipids, Alabaster, AL) according to the manufacturer's
instructions as we described previously [30]. In brief, 5 μg of DNA was
mixed with lipid solution in a ratio of 1:10 (DNA/lipid, w/w) in
serum-free culturemedium (5 ml for a 10 cmdish). Cellswere incubat-
ed with this transfectionmedium for 6 h and switched to normal medi-
um for another 16 h. The cells were then ready for experiment. In
preliminary experiments, almost all cells were positive after transfec-
tion with luciferase plasmids when detected by bioluminescent imag-
ing (IVIS200; Caliper Life Sciences, Hopkinton, MA), demonstrating a
high transfection efficiency (data not shown). Plasmids encoding
full-length rat PHD2 were generous gifts from Dr Frank S. Lee (Univer-
sity of Pennsylvania). The expression and function of rat PHD2 protein
by this plasmid have been validated by Dr Lee [31,32] and in our previ-
ous study [28,33,34]. Luciferase plasmids (Promega,Madison,WI)were
used as control for PHD2 expression vector transfection experiments.

2.4. RNA extraction and quantitative RT-PCR analysis

Total RNA was extracted using TRIzol solution (Life Technologies,
Inc., Rockville, MD) and then reverse-transcribed (RT) (cDNA Synthesis
Kit, Bio-Rad, Hercules, CA). The RT products were amplified using a
TaqMan Gene Expression Assays kit (Applied Biosystems). A kit for
detecting the levels of 18S ribosomal RNA was used as an endogenous
control. The relative gene expressions were calculated in accordance
with the ΔΔCt method. Relative mRNA levels were expressed by the
values of 2−ΔΔCt.

2.5. Western blot analysis

Cytosolic protein and nuclear protein preparation, aswell aswestern
blotting, were performed as we described previously [28,30,35]. Briefly,
after boiling for 5 min at 95 °C in a 5× loading buffer, cytosolic protein
and nuclear protein were subjected to SDS-PAGE, transferred onto a
PVDF membrane and blocked by solution with dry milk respectively.
For cytosolic protein, the membrane was probedwith primary antibod-
ies of anti-P-cadherin (1:500, R&D System), anti-α-SMA (1:5000, R&D
System), anti-FSP-1 (1:500, Abcam) and anti-PHD2 (1:500, Novus)
overnight at 4 °C followed by incubation with horseradish peroxidase-
labeled secondary antibody (1:5000); β-actin was detected by using
horseradish peroxidase-labeled anti-β-actin antibody (1:5000, Santa
Cruz Biotechnology) as a loading control. For nuclear protein, HIF-1α
was detected using anti-HIF-1α antibody (1:500, GeneTex) followed
by incubation with horseradish peroxidase-labeled secondary antibody
(1:3000). Transcription factor II D (TFIID)was detected using anti-TFIID
antibody (1:100, Santa Cruz Biotechnology) followed by incubation
with horseradish peroxidase-labeled secondary antibody (1:3000) as a
loading control for nuclear protein [36]. The immunoreactive bands
were detected by chemiluminescence methods and visualized on
Kodak Omat X-ray films. The densitometry analyses of the blots were
performed using an ImageJ software (free download from National
Institutes of Health http://rsbweb.nih.gov/ij/download.html). To calcu-
late the relative values of blot intensities, band intensities in control
groupwere averaged and then all the band intensities were normalized
to the mean value of control group. The normalized values in different
groups were averaged and expressed as fold change with the mean
value of control group as 1.

2.6. Immunofluorescent microscopy

Immunofluorescent staining was performed using cultured renal
tubular cells on cover slips. After fixation, the cells were incubated
with goat anti-FSP-1 (1:50 dilution) (Santa Cruz Biotechnology Inc.,
Santa Cruz, CA, USA), goat anti-P-cadherin (1:25 dilution), or mouse
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anti-α-SMA (1:300 dilution) (R&D System, Minneapolis, MN, USA)
antibodies, respectively, at 4 °C overnight. After washing, the slides
were incubated with corresponding Alex-555-labeled secondary anti-
bodies and then mounted and subjected to examinations using a
confocal laser scanning microscope (FluoView FV1000, Olympus,
Japan). These experiments were performed to observe the changes
of EMT markers in renal tubular cells. Integrated optical intensity
(IOD) was calculated by using an Image-Pro Plus v6.0 software
(Media Cybernetics, Silver Spring, MD). The IOD values in control
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Fig. 1. Effect of TGF-β1 on HIF-1α and EMT marker protein content. Representative gel
documents (A) and summarized data (B) showing the effect of TGF-β1 on HIF-1α protein
level. Transcription factor II D (TFIID) was used as a loading control for nuclear protein.
Representative gel documents (C) and summarized data (D) showing the effect of
TGF-β1 on epithelial marker P-cadherin and mesenchymal marker α-SMA protein level.
All band densities were normalized to the mean value of 0h group and the normalized
valueswere then calculated and presented in the figure. P-cad: P-cadherin. n = 4 batches
of cells. *P b 0.05 vs. 0h TGF-β1 treatment.
group were averaged, and all the IOD values were normalized to the
mean value of the control group. The normalized values in different
groups were averaged and expressed as fold change with the mean
value of control group as 1.

2.7. Statistics

Data are presented as means ± S.E.M. Significant differences
between and within multiple groups were examined using ANOVA
for repeated measures, followed by Duncan's multiple-range test.
Student's t test was used to evaluate the significance of differences
between two groups of experiments. A value of P b 0.05 was consid-
ered statistically significant.

3. Results

3.1. HIF-1α siRNA blocked TGF-β1-induced EMT

We first evaluated whether TGF-β1 would have any effect on
HIF-1α protein levels in renal tubular cells. As shown in Fig. 1A & B,
TGF-β1 increased HIF-1α protein level when cells were treated for
16 h, and HIF-1α reached the highest level after 24 h and 48 h treat-
ment. Interestingly, epithelial marker P-cadherin was decreased
when cells were treated with TGF-β1 for 16 h, and the protein level
reached the lowest level after 24 and 48 h treatment. In contrast,
mesenchymal marker α-SMA was increased when cells were treated
with TGF-β1 for 16 h, 24 h and 48 h (Fig. 1C & D).

Previous studies showed that HIF-1αwas increased in response to
hypoxia, and the increased HIF-1α was involved in hypoxia-induced
EMT. We then determined whether the increased HIF-1α in response
to TGF-β1 stimulation mediated TGF-β1-induced EMT. As shown in
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Fig. 2. HIF-1α siRNA blocked TGF-β1-induced changes in P-cad, α-SMA and FSP-1. Repre-
sentative gel documents (A) and summarized data (B) showing the effect of HIF-1α siRNA
on TGF-β1-induced decrease in epithelial marker P-cadherin, and the increase inmesenchy-
malmarkersα-SMA and FSP-1. Veh: vehicle; Scram: scrambled RNA; P-cad: P-cadherin. The
values were normalized to Veh. n = 6 batches of cells, *P b 0.05 vs. other groups.
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Fig. 2, TGF-β1 significantly decreased epithelial marker P-cadherin,
and increased mesenchymal markers including cytoskeletal protein
α-SMA and signal transduction protein FSP-1, indicating that EMT
occurred in response to TGF-β1 stimulation. In cells pretreated with
HIF-1α siRNA, TGF-β1-induced EMT was significantly inhibited as
indicated by the increase in epithelial marker P-cadherin, and de-
crease in mesenchymal markers α-SMA and FSP-1 compared with
TGF-β1-treated group. These results indicate that HIF-1α mediates
TGF-β1-induced EMT in renal tubular cells.
3.2. TGF-β1 decreased PHD2 mRNA and protein levels

It has been shown that prolyl hydroxylase is the main regulator of
HIF-1α in cells. We then determined the expression and abundance
of PHD subtypes in renal tubular cells by real-time PCR. Among
three different PHDs (PHD1, PHD2, PHD3), only PHD1 and PHD2
were detected. The ΔCt value of PHD1 and PHD2 was 15.6 and 13.4
respectively, and the calculated ratio of PHD1 to PHD2 was 0.21:1.0
(n = 6), indicating that PHD2 is the predominant form of PHDs in
renal tubular cells.

Next, we evaluated whether TGF-β1 had any effect on mRNA/
protein levels of PHD1 and PHD2. As presented in Fig. 3, TGF-β1 had
no significant effect on PHD1 mRNA (Fig. 3A) and protein levels
(Fig. 3B & C). In contrast, TGF-β1 dramatically decreased PHD2 mRNA
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Fig. 3. Effect of TGF-β1 on PHD1 mRNA and protein levels. (A) Summarized data show-
ing the effect of TGF-β1 on PHD1 mRNA level. Representative gel documents (B) and
summarized data (C) showing the effect of TGF-β1 on PHD1 protein level. The values
were normalized to 0h. n = 4–6 batches of cells.
levels with sustained effect from 16 h (Fig. 4A). Similarly, TGF-β1
time-dependently decreased PHD2 protein level, which reached its
maximum value from 1.0 ± 0.08 to 0.26 ± 0.08 (P b 0.05) at 24 h as
shown in western blot assay (Fig. 4B & C).
3.3. PHD2 transgene prevented TGF-β1-induced HIF-1α increase and
EMT

To determine whether the decreased PHD2 contributes to the
HIF-1α increase and consequent EMT after TGF-β1 stimulation,
PHD2 overexpression plasmid was transfected into renal tubular
cells, and then the effect on TGF-β1-induced changes in PHD2 and
HIF-1α, as well as EMT, was evaluated. The gene transfection efficien-
cy was validated by western blot showing that TGF-β1 treatment
decreased PHD2 protein level, and this decrease was reversed when
cells were transfected with PHD2 overexpression plasmid (Fig. 5A & B).
As shown in Fig. 5C & D, PHD2 transgene effectively prevented
TGF-β1-induced HIF-1α increase. In Fig. 6, TGF-β1 induced significant
EMT, as indicted by the decrease in epithelial marker P-cadherin, and
the increase in mesenchymal markers α-SMA and FSP-1. When the
cells were pretreated with PHD2 overexpression plasmid, TGF-β1-
induced EMT was significantly inhibited, as shown by the increase in
epithelial marker P-cadherin, and decrease in mesenchymal markers
α-SMA and FSP-1 compared with TGF-β1-treated group. These results
indicate that PHD2 mediates TGF-β1-induced HIF-1α increase and EMT.
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3.4. HIF-1α siRNA and PHD2 transgene prevented TGF-β1-induced EMT
as detected by fluorescence microscopy

The involvement of HIF-1α and PHD2 in TGF-β1-induced EMTwas
further investigated by fluorescence confocal assay. Immunostaining
analysis of EMTmarkers was performed in cells with or without stim-
ulation of TGF-β1. As shown in Fig. 7, under basal condition renal
tubular cells were enriched with epithelial marker P-cadherin, and it
is mainly located on the plasma membrane. When these renal tubular
cells were treatedwith TGF-β1, the expression of P-cadherinwasmark-
edly reduced as shown in decreased red fluorescence in TGF-β1-treated
cells, and P-cadherin was delocalized from plasma membrane (Fig. 7).
When cells were pre-treated with HIF-1α siRNA or transfected with
PHD2 overexpression plasmid, TGF-β1-induced P-cadherin delocaliza-
tion was blocked.
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documents (A) and summarized data (B) showing the effect of PHD2 transgene on
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In contrast, the abundance of twomesenchymalmarkers,α-SMA and
FSP-1was very low in renal tubular cells under control condition as indi-
cated by the weak fluorescence in confocal images. When these cells
were stimulated by TGF-β1, the expression of both α-SMA and FSP-1
was remarkably increased as shown by the increased fluorescence in
confocal images. When renal tubular cells were pretreated with HIF-1α
siRNA or transfected with PHD2 overexpression plasmid, TGF-β1 failed
to increase α-SMA and FSP-1 expressions (Fig. 7). These results further
confirmed that HIF-1α and PHD2 mediate TGF-β1-induced EMT.
3.5. HIF-1α siRNA and PHD2 transgene prevented TGF-induced collagen I
expression

It has been shown that collagen expression is increased in cells
undergoing EMT, which is pathologically related to fibrosis. We then
evaluated whether PHD2/HIF-1α mediated TGF-β1-induced collagen
expression upon EMT. Fig. 8 shows that TGF-β1 induced significant
increase in collagen I expression in renal tubular cells. After cells
were pretreated with HIF-1α siRNA or PHD2 overexpression plasmid,
TGF-β1-induced collagen increase was almost fully inhibited, indicat-
ing that HIF-1α/PHD2 mediates TGF-β1-induced collagen expression,
and this change may be caused by HIF-1α/PHD2-mediated EMT.
3.6. Smad pathway mediates TGF-β1-induced PHD2 supression

Finally, we investigate whether TGF-β1-induced PHD2 change is
mediated by Smads signaling pathway, since previous studies show
that TGF-β1 decreased PHD2 level in an Smad-dependent manner.
As shown in Fig. 9, TGF-β1 induced significant PHD2 decrease in PT
cells, this effect was abolished in the presence of Smad2/3 inhibitor
SB431542, indicating that Smad signaling pathway was involved in
TGF-β1-induced PHD2 decrease.
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transgene; P-cad: P-cadherin. The values were normalized to Veh. n = 4–6 batches
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4. Discussion

The present study demonstrated that TGF-β1 decreased PHD2
expression, thereby leading to HIF-1α accumulation. It was found
that this PHD2/HIF-1α signaling pathway mediates TGF-β1-induced
EMT, since both HIF-1α siRNA and PHD2 overexpression blocked
TGF-β1-induced lose of epithelial marker P-cadherin and gain of
mesenchymal markers α-SMA and FSP-1. In addition, Smad2/3 inhib-
itor SB431542 prevented TGF-β1-induced PHD2 decrease. These data
support a direct role for PHD2/HIF-1α pathway as a crucial mediator
in TGF-β1-induced EMT via an Smad-dependent mechanism in renal
tubular cells.
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RNA as control for HIF-1α siRNA treatment, and control plasmid for PHD2 transgene treatm
lated by using Image-Pro Plus v6.0 software. All the IOD values were normalized to the me
n = 5 batches of cells, *P b 0.05 vs. other groups.
As epithelial cells transdifferentiate into mesenchymal cells during
EMT, levels of cytoskeletal proteins (e.g. α-SMA) [37,38], and signal
transduction proteins (e.g. FSP-1) are increased [37,38], and the expres-
sion of epithelial genes, including P-cadherin is repressed [39,40]. Mor-
phologically, the epithelial marker cadherin protein is delocalized from
cell membrane during EMT [41]. Therefore, the changes in α-SMA,
FSP-1 and P-cadherin have been widely used as indicators for EMT
[40,42]. In the present study, exposure of proximal tubular cells to
TGF-β1 stimulated the expression of α-SMA and FSP-1, and inhibited
P-cadherin expression, demonstrating that TGF-β1 stimulated EMT in
tubular cells, which is consistent with previous reports [43,44]. It has
been shown that TGF-β1 induces HIF-1α accumulation under normoxic
HIF-1α siRNA

+ TGF-β1
PHD2 trans
+ TGF-β1
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and FSP-1 by immunofluorescent microscopy assay. (A) Representative images show-
e in epithelial marker P-cadherin, and increases in mesenchymal markers α-SMA and
ne on integrated optical intensity of α-SMA and FSP-1. Veh: vehicle; Ctrl: scrambled
ent; trans: transgene; P-cad: P-cadherin. Integrated optical intensity (IOD) was calcu-
an value of Veh group and then the normalized values were calculated and presented.
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Fig. 8. HIF-1α siRNA and PHD2 transgene blocked TGF-β1-induced collagen I increase.
Representative gel documents (A) and summarized data (B) showing the effect of
HIF-1α siRNA and PHD2 transgene on TGF-β1-induced collagen I changes in renal tubular
cells. Veh: vehicle; Ctrl: scrambled RNAas control forHIF-1α siRNA treatment, and control
plasmid for PHD2 transgene treatment; trans: transgene. The values were normalized to
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Fig. 9. Smad inhibition blocked TGF-β1-induced PHD2 decreases. Representative gel
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conditions in different cells such as HT1080 and vascular smooth mus-
cle cells and that HIF-1α accumulation is involved in TGF-β1-induced
various effects, such as fibrosis, apoptosis and tumor angiogenesis
[17,19,23,45,46]. In the present study, we demonstrated that TGF-β1 in-
creased HIF-1α protein level in renal tubular cells, and provided novel
data by showing that this HIF-1α accumulation mediated EMT in
response to a non-hypoxic stimulator TGF-β1 [13,14,16].

The role of PHDs in EMT was also evaluated in the present study
since it represents the most important signaling pathway in regulat-
ing HIF-1α. The present study found that PHD2 is the major form of
PHDs in renal tubular cells, which is consistent with previous studies
showing that PHDs are present in the kidneys, with PHD2 as the pre-
dominant isoform of PHDs, although PHD1 and PHD3 can also be
detected [26–28,47,48]. Furthermore, we found that PHD2, but not
PHD1, was decreased in response to TGF-β1 stimulation, and that
this PHD2 decrease was responsible for the increased HIF-1α accu-
mulation, suggesting divergences in their regulation [23,49–51]. It
has been well documented that PHDs are emerging as an important
regulator of HIF-1α in response to both hypoxic and non-hypoxic
stimulation, and are involved in many physiological and pathological
processes such as collagen expression, cell death, tumor suppression,
and blood pressure regulation [17–19,52]. By using bothWestern blot
and confocal staining, the present study shows novel finding by dem-
onstrating that PHD2, as an upstream regulator of HIF-1α, mediates
non-hypoxic agonist TGF-β1-induced EMT in renal tubular cells.

It has been shown that myofibroblasts are activated fibroblasts and
the main source for extracellular matrix, thus contributing to kidney
fibrosis [53,54]. In particular, it has been demonstrated that the tubular
epithelial cells undergoing EMT contribute to one-third of myofibroblast
during kidney fibrosis [4,55]. Consistently, the present study shows that
PHD2/HIF-1α mediated TGF-β1-induced collagen I expression, which is
even considered as an EMTmarker in previous studies [53]. Considering
the critical roles of TGF-β1 andEMT in tubulointerstitialfibrosis, thefind-
ings in the present study suggest that PHD2/HIF-1αmaybe an important
signaling pathway in mediating this pathological change.

Smad signaling pathway, especially Smad2 and Smad3, plays a cen-
tral role in TGF-β1-induced effects including EMT in various cell types,
such as human bronchial epithelial cells [56,57], murine cloned corneal
progenitor cells [58], and panc1 cells [59]. Furthermore, Smad2/3 sig-
naling pathway has been reported to mediate EMT in response to
hypoxia in hepatocytes [14]. In animal studies, targeted disruption of
TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibro-
sis induced by unilateral ureteral obstruction [60]. It has been suggested
that Smad2/3 can regulate the expression of EMT-related genes after
interacting with other proteins [2,61]. The present study provided
novel mechanisms underlying Smad-mediated EMT by showing that
Smad2/3 mediated TGF-β1-induced PHD2 decrease, which then leads
to HIF-1α increase and the subsequent EMT.

It should be noted that although EMT has been well acknowledged,
there are debates about the involvement of EMT in renal fibrosis in vivo
[54,62–65]. Evidence supporting EMT in vivo includes the loss of epithe-
lial markers, acquisition of mesenchymal markers and collagen synthe-
sis by epithelial cells in diseased kidneys from both human and animal
studies, as well as effective strategies to treat experimental fibrosis
based on EMTmechanism. However, studies using lineage-tracing tech-
niques to detect tubular epithelial cell-derived fibroblasts show contro-
versial results. An early experiment showed that labeled tubular cells
gained EMT markers and migrated into the peritubular interstitium,
while several recent similar fate-tracing studies did not detect the
EMT markers in labeled tubular cells and failed to find labeled cells in
peritubular interstitium. One of the arguments for the conflicting results
from these in vivo cell lineage-tracking studies is that the technical dif-
ferences may account for the disparity. One opinion is that detection of
intermediate stages of EMT in injured kidney is straightforward and the
current gold standard, and to observe EMT process aswell as cell migra-
tion in real time in vivo is not feasible with current technology.
Nevertheless, our current study revealed a novel mechanism for EMT
in renal tubular cells.

In summary, the present study demonstrated that TGF-β1 decreased
PHD2 expression via an Smad-dependent mechanism, thereby leading
to HIF-1α accumulation, and that this PHD2/HIF-1α signaling pathway
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mediated TGF-β1-induced EMT in renal tubular cells. This novel
signaling pathway in renal tubular cells may contribute to renal
tubulointerstitial fibrosis in chronic kidney diseases.
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